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Abstract  

 
This paper presents the results of a series of fundamentally important studies using a validated CFD based fluid/structure 
fracture model for predicting ductile fractures in pressurized pipelines employed for transporting captured CO2 from 
fossil fuel power plants.  The range of parameters investigated include the variations in the line temperature (0 – 30 oC), 
operating pressure (100 and 180 barg) and the presence of the different types of impurities in the CO2 stream based on 
the various capture technologies including pre-combustion, post-combustion and oxy-fuel. In the case of a X65 pipeline 
chosen as a case example, it is found that the pure CO2 and the post-combustion transmission pipelines exhibit very 
similar and highly temperature dependent propensity to fracture propagation. An increase in the line temperature from 
20 to 30 oC results in the transition from a relatively short crack to a long running propagating fracture. The situation 
becomes progressively worse in moving from the pre-combustion to the oxy-fuel stream where long running ductile 
fractures are observed at all the temperatures under consideration.  Remarkably and counter intuitively, an increase in 
the line pressure decreases the pipeline’s propensity to ductile fractures.  All of the above findings are successfully 
explained by examining the CO2 and its mixtures depressurization trajectories during fracture propagation relative to the 
corresponding phase equilibrium envelopes.   

 

1. Introduction 

 
In the battle against global warming, pressurized pipelines are widely recognized as the most practical and 

economical means of transporting the huge amounts of captured CO2 from coal fired power plants for subsequent 
sequestration . Typically, such pipelines are expected to cover distances of several hundred kilometres at pressures 
above 100 bar. 

Given that CO2 is as an asphyxiant at high concentrations (Kruse and Tekiela, 1996), the safety of CO2 
pipelines in the unlikely event of pipeline rupture is of paramount importance and indeed central to the public 
acceptability of Carbon Capture and Sequestration (CCS) as a viable means of combating the impact of global warming. 

Ironically (in line with its abbreviation), CCS and related legislation generally focus on the capture and 
sequestration of CO2 and not on its transportation.  

It is noteworthy that CO2 pipelines have been in operation in the US for over 30 year for enhanced oil recovery 
(Seevam et al., 2008; Bilio et al., 2009). However, these are either confined to low populated areas, and/or operate 
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below the proposed supercritical conditions (73.3 bar and 31.18 oC) that make CO2 pipeline transportation economically 
viable. Additionally, due to their small number, it is not possible to draw a meaningful statistical representation of the 
risk.  

Running fractures are by far the most catastrophic type of pipeline failure. These involve the rapid tearing of 
the pipeline, sometimes running for several hundred meters resulting in the release of massive amounts of inventory in a 
very short space of time. Given its importance, a large number of studies spanning more than 30 years (see for example 
Leis et al., 2010; Maxey, 1974) have been devoted to understanding the mechanism and overcoming such failures in the 
hydrocarbon industry.  

In essence, such fractures can initiate from defects introduced into the pipe by outside forces such as 
mechanical damage, soil movement, corrosion, material defects or adverse operating conditions. When the stress acting 
on the defect overcomes the fracture toughness of the pipe the fracture will propagate, reaching a critical size based on 
the pipeline material properties and operating conditions. As such it is highly desirable to design pipelines such that 
when a defect reaches a critical size and fails, the result is a leak rather than a long running fracture.  

The so called Battelle Two Curve (BTC) method (Maxey, 1974) was the first used to express the criterion for 
the propagation of a ductile fracture in terms of the relation between the fluid decompression wave velocity and the 
crack propagation velocity. If the fluid decompression wave velocity is larger than the crack velocity, the crack tip stress 
will decrease, eventually dropping below the arrest stress causing the crack to arrest. Conversely, if the decompression 
wave velocity remains smaller than the crack velocity, the crack tip pressure will remain constant resulting in indefinite 
propagation.  

Compared to natural gas for example, CO2 has an unusually high saturation pressure. Depending on the starting 
pressure and temperature, the above coupled with the uniquely ‘prolonged’ depressurization during the liquid/gas phase 
transition (Bilio et al., 2009) mean that at certain operating conditions, CO2 pipelines may be more susceptible to 
fracture propagation as compared to hydrocarbon pipelines (Bilio et al., 2009; Mahgerefteh et al., 2010). As such 
accounting for any parameters that may modify the CO2 depressurization trajectory is of paramount importance when 
modelling ductile fractures in CO2 pipelines. 

One such important factor which is receiving increasing attention (see for example de Visser et al.,2008; 

Heggum et al., 2005) is the impact of impurities. Recent studies using various equations of state have shown that even 
small amounts of the likely impurities in the CO2 stream will increase the saturation pressure significantly (see for 
example Oosterkamp and Ramsen, 2008, Li and Yan, 2006).  

The type of these impurities will depend on the fuel, capture method (i.e pre-combustion, post-combustion or 
oxy-fuel) and the post-capture processing (ICF International, 2010). The percentage composition of the transported 
stream on the other hand, although being overwhelmingly CO2, will have to comply with the prevailing legislative 
emission limits (de Visser et al., 2008; ICF International, 2010). 

Crucially, given that the decompression and the fracture velocity curves are not coupled  means that the 
Battelle Two Curve method is primarily indicative as to whether or not a fracture will propagate for a given pipe 
toughness. Important information such as the variation of the crack length with crack propagation velocity and, 
ultimately the crack arrest length cannot be produced using this approach.  

In this paper we report the results of a series of studies using a fully coupled Fluid/Structure Fracture Model to 
investigate the impact of line pressure, line temperature and the various impurities on the fracture propagation and arrest 
behaviour in dense phase CO2 pipelines. The compositions of the impurities assumed are those based on the various 
capture technologies, including pre-combustion, post-combustion and oxy-fuel as suggested by ICF International 
(2010). In each case, the variation of fracture velocity versus fracture length is reported for an hypothetical CO2 pipeline 
with a realistic fracture toughness.  

 

2. Theory 

The full background theory and validation of the Fluid/Structure Fracture Model (FSFM) employed in this 
study is presented in separate publications (Mahgerefteh et al., 2010, 2011).  A brief account of the main features is 
given here.  

In essence the model involves the coupling of the well-established Drop Weight Tear Test energy fracture 
model (Makino et al., 2001a) with our extensively validated real fluid CFD model, PipeTech (Mahgerefteh et al., 2007; 
Mahgerefteh et al., 2006; Wong and Mahgerefteh, 1999; Oke et al., 2003). The coupled fracture model, FSFM accounts 
for all of the important fluid/structure interaction processes governing the fracture propagation and arrest process. These 
include expansion wave propagation, real fluid behaviour, multi-phase pipe/wall friction and heat transfer as well as the 
rapidly diminishing dynamic loading effects as the crack tip opens. 
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FSFM’s predictions have been successfully validated (Mahgerefteh et al., 2010) against the full-scale fracture 
tests conducted by the High-Strength Line Pipe Committee (Inoue et al., 2003), ECSC X100 (Takeuchi et al., 2006) and 
Alliance (Johnson et al., 2000). 

Based on the homogeneous flow assumption, shown to generally be valid in the case of rupture of long 
pipelines (Chen et al., 1993), in the case of unsteady, one-dimensional flow the mass, momentum and energy 
conservation equations are respectively are given by (Mahgerefteh et al., 2006; Mahgerefteh and Atti, 2006): 
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Where ρ, u, P and h are the density, velocity, pressure and specific enthalpy of the homogeneous fluid as 

function of time, t, and space, x. qh is the heat transferred through the pipe wall to the fluid and βy is the friction force 
term given by: 

 

 uρu
D

f
2β w

y −=            (4) 

 
where, fw is the Fanning friction factor and D the pipeline diameter. 
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θ is the angle of inclination of the pipeline to the horizontal. 
Equations (1-3) form a system of quasi-linear partial differential equations that must be solved numerically. In 

this study, the Method of Characteristics (MOC) (Zucrow and Hoffman, 1975) is used as the numerical solution method, 
as opposed to other numerical techniques such as finite element (Bisgaard and Sørensen, 1987; Lang, 1991) and finite 
difference methods (Bendiksen et al., 1991; Chen et al., 1995a,b) as both have difficulty in handling the choking 
condition at the rupture plane.  

Pipeline resistance to fracture is obtained based on the full-scale pipe bust tests conducted by the High-Strength 
Line Pipe Committee (HLP) (Makino et al., 2001b). In these investigations the BTC approach is used in conjunction 
with the Drop Weight Tear Test (DWTT) energy, as this coupling is shown to provide an accurate indication of the 
pipeline resistance to fracture. The crack propagation velocity, vc and crack arrest pressure, Pa are respectively given by 
(Makino et al., 2001b): 
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Where σflow, Dp and Ap are respectively the flow stress (the mean value of the tensile and yield stresses), pre-
cracked DWTT energy and ligament area of a pre-cracked DWTT specimen. On the other hand Pt and tw are the crack 
tip pressure and pipe wall thickness respectively. The crack tip pressure Pt is taken to be the choked pressure at the 
pipeline release plane. 
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Table 2. Pipeline characteristics and 
prevailing  conditions utilised for 
fracture propagation simultations.                       

The coupling of the fracture and the fluid decompression models involves a feedback algorithm in which the 
effective pipeline length is continuously updated based on the crack extension calculated from the crack velocity using 
equations (6) and (7). The crack tip pressure as the pipeline depressurizes is determined from the numerical solution of 
the conservation equations (1-3) taking account of heat transfer and frictional effects. The Modified Peng-Robinson 
Equation of State (Wu and Chen, 1997) (MPPR EoS) is used for the prediction of the pertinent fluid phase equilibrium 
data for CO2 and its mixtures. This equation has been shown (Mahgerefteh et al., 2008) to produce generally good 
agreement with the well-established but computationally demanding GERG-2004 Equation of State (Kunz et al., 2007). 

  

3. Results and Discussion  

The following presents the simulation results obtained based on the application of the fracture model described 
above to an hypothetical pipeline containing various dense phase mixtures of CO2 in the temperature and pressures 
ranges of 0 - 30 oC and 100 and 180 barg respectively. 

The pipeline characteristics and the prevailing conditions are given in table 1. The adopted pipeline grade of 
X65, the line pressures and the overall dimensions are those considered to be the most likely (Cosham and Eiber, 2008) 
to be employed for CO2 pipelines as part of the CCS chain. In order to maintain practical computational run times, the 
pipeline length is limited to 500 m. This assumption will have no influence on the findings. The un-insulated pipeline is 
assumed to be exposed to still air corresponding to a heat transfer coefficient of 5 W/(m2 K). The ambient temperature is 
assumed to be the same as the line temperature.  

Table 2 shows the various CO2 stream compositions employed in the fracture simulations according to post-
combustion, pre-combustion and oxy-fuel capture technologies as proposed by ICF International (2010). 

 

  

 

 

Parameter Value 

Internal diameter  (m) 0.5905 

Wall thickness (mm) 9.45 

Line pressure (barg) 100 

Ambient pressure (bara) 1.01 

Ambient temperature (oC) 20 

Feed temperature (oC)  0,10,20,30 

Pipe length (m) 500 

Tensile stress (MPa) 531 

Yield stress (MPa) 448 

Pipe wall roughness (mm) 0.05 

Heat transfer coefficient 
(W/m2K) 

5 

Wind speed (m/s) 0 

Pipe grade X65 

Fracture toughness (J)  50 

Species 
Post-

combustion 

Pre-

combustion 

Oxy-

fuel 

CO2 99.82 95.6 88.4 

Ar 0 0 3.7 

CO 0 0.4 0 

N2 0.17 0.6 2.8 

H2S 0 3.4 0 

Cl 0 0 0.14 

H2 0 0 0 

O2 0.01 0 3.6 

SO2 0 0 1.36 

H2O 0 0 0 

NO2 0 0 0 

Table 1. CO2 stream compositions based on 
the various capture technologies (ICF 
International, 2010). 
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3.1 Impact of Line Temperature and Impurities 

Detailed analysis of the impact of line temperature in the range 0 to 30 oC for the various CO2 stream 
concentrations was presented in our previous publication (Mahgerefteh et al., 2011). Table 3 shows a summary of the 
results in terms of the variation of ratio of crack to pipeline length for the various capture technologies. A crack ratio of 
unity corresponds to a fracture running through the entire length of the pipeline.  

 
The following important observations may be made based on the data in table 3: 

 

• For pure CO2, in the temperature range 0 – 20 oC, an increase in the line temperature results in a modest 
increase in the crack arrest length and fracture velocity. The maximum crack length is limited to a distance of 
11 m. However, remarkably only a 10 oC rise in the line temperature to 30 oC results in a fast running fracture 
travelling through the entire length of the 500 m pipeline.   

• For post-combustion CO2, the fracture behavior is substantially the same as that for pure CO2 with the 
expectation of the crack length running over a marginally longer distance between 0 – 20 oC before coming to 
rest. Once again the rise in the line temperature to 30 oC results in fracture propagating through the entire 
pipeline length.    

• In the case of the pre-combustion CO2 stream, the transition to a long running fracture commences at a lower 
temperature of 20 oC as compared to the pure and post-combustion CO2 streams. 

• The oxy-fuel composition demonstrates the worst case scenario. Here long running fractures are obtained at all 
the temperatures tested.  
 

Table 3. Ratio of crack to pipeline length for the various capture technologies for different line temperatures at 100 barg. 

 

Capture 

technology Temperature (
o
C) Crack to pipeline length 

0 0.011 

10 0.018 

20 0.018 

100% CO2 

30 1 

0 0.011 

10 0.013 

20 0.018 

Post-combustion 

30 1 

0 0.013 

10 0.013 

20 0.015 

Pre-combustion 

30 1 

0 0.024 

10 1 

20 1 

Oxy-fuel 

30 1 
 

3.2 Impact of the Line Pressure  

Figure 1 shows the variation of the crack velocity with crack length for the pre-combustion stream chosen as an 
example. The data are for a line pressure of 100 barg in the temperature range 0 – 30 oC presented at 10 oC intervals. 
Figure 2 on the other hand shows the corresponding  data at the higher line pressure of 180 barg.   

According to figure 1, it is clear that at the operating pressure of 100 barg, long running fractures may be 
expected whenever the line temperature exceeds 10 oC. Remarkably and counter intuitively, according to figure 2, when 
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the line pressure increases to 180 barg, the pipeline becomes more resistance to fracture propagation. This time, the 
transition temperature resulting in a long running fracture increases to a higher temperature of 30 oC.  

Figures 3 and 4 show the corresponding data presented above for the oxy-fuel CO2 stream. Referring to figure 
3, when the line pressure is 100 barg, it is clear that long running fractures may be expected at all the temperatures 
under consideration. This situation is not improved when the line pressure increases to 180 barg.  

To explain the above behavior, figure 5 shows the fluid depressurization trajectories in terms of the variation of 
crack tip pressure with the discharging fluid crack tip temperature at the two starting line pressures of 180 barg (curve 
A) and 100 barg (curve B) for the pre-combustion mixture. The data are presented for a line temperature of 20 oC  
chosen as an example. The vapour/liquid saturation curve is plotted in the same figure for reference. The crack arrest 
pressure of 43.65 barg calculated from equations (6) and (7) is also shown for comparison. The corresponding data for 
the oxy-fuel mixture is given in figure 6. The broadening of the phase transition envelop in moving from the pre-
combustion to the oxy-fuel compositions is due to the presence of increasing amounts of impurities in the CO2 stream.   

Returning to figure 5 for the pre-combustion mixture, the onset of fracture results in a rapid drop in the crack 
tip pressure from the liquid phase to the dew point curve followed by a slow depressurization. The accompanying 
significant drop in the fluid temperature is due to its near adiabatic expansion.   

Based on the data presented, it is important to note that the pressure at which the two depressurization 
trajectories (curves A and B) intersect the dew curve decreases with increase in the starting line pressure. In the case of 
the 100 barg pipeline, the intersection pressure is ca. 46 barg. The corresponding value for the 180 barg pipeline is at 
the lower pressure of ca. 38 barg. Given that the crack arrest pressure is ca. 43 barg, it is to be expected that a long 
running fracture may not be expected in the case of the 180 barg pipeline at 20 oC.  This is consistent with the data 
shown in figure 2; curve C.  

Exactly the same arguments apply when using figure 6 to explain the fracture propagation behavior observed in 
figures 3 and 4 for the oxy-fuel mixture. Here the two depressurization trajectories (figure 6: curves A and B) never fall 
below the fracture arrest pressure thus leading to long running fractures.  
 

4. Conclusion 

 
Pressurized pipelines are expected to play a key role as part of the CCS chain for combating the impact of 

global warming. Given the hazardous nature of CO2 at high concentrations and heightened public concern regarding the 
introduction of such nascent technology, the risk of an accidental pipeline rupture must be minimised.  

Central to above is the design of pipelines with the correct mechanical properties which can withstand the most 
catastrophic type of failure, long running ductile fractures.  Although considerable understanding of ductile fractures 
already exists for hydrocarbon pipelines, this experience can not be wholly extended to CO2 pipelines given the unique 
depressurization thermodynamic trajectory of CO2.     

In this paper, using a rigorous validated fully coupled fracture model, we reported the results of a series of 
simulations investigating the impact of the line temperature, pressure and the different types of likely impurities on 
ductile fracture propagation behaviour in CO2 pipelines. The model, validated against real data, for the first time 
accounts for all the important fluid/structure interactions taking place during the fracture propagation process. These 
include real fluid behaviour, heat transfer, friction and the change in the dynamic loading as the crack tip opens.   

Using a X65, 500 m pipeline as a case study, our investigations reveal the remarkable impact of the line 
temperature on the pipeline’s propensity to fracture propagation. For example, in the case of the post-combustion 
pipeline, increasing the line temperature from 20 to 30 oC results in the transformation of a short crack into a fast 
running long fracture.  

Of all the three classes of impurities corresponding to the various capture technologies examined, it was found 
that the oxy-fuel mixture represented the worse case scenario with long fractures occurring under all the conditions 
tested. Remarkably, the increase in the line pressure from 100 to 180 barg improved the pipeline’s propensity to fracture 
propagation. All of the above findings were successfully explained by examining the CO2 and its mixtures 
depressurization trajectories during fracture propagation relative to the corresponding phase envelopes.  

‘In essence a fracture propagates if the pressure at which the discharging fluid intersects the due point curve is 
higher than the crack tip arrest pressure’.  

In conclusion, we point out that the results presented in this paper are based on the particular pipeline with the 
given fracture toughness chosen as the case study. The fracture model presented in this paper can serve as a powerful 
tool for pipeline design engineers to select the appropriate pipeline mechanical properties to resist running fractures for 
a range of mixtures and operating conditions.   
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Figure 2. The impact of the line temperature on the 
variation of crack velocity with crack length for pre-
combustion CO2 pipeline at 180 barg. 

 

 

Figure 1. The impact of the line temperature on the 
variation of crack velocity with crack length for pre-
combustion CO2 pipeline at 100 barg. 

 

 

Figure 3. The impac of the line temperature on the 
variation of crack velocity with crack length for oxy-
fuel combustion CO2 pipeline at 100 barg. 

 

 

Figure 4. The impact of the line temperature on the 
variation of crack velocity with crack length for oxy-
fuel combustion CO2 pipeline at 180 barg. 
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Figure 6. The variation of crack tip pressure 
with discharging fluid temperature for the oxy-
fuel pipeline at different starting line pressures. 
Line temperature: 20 oC.    
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Figure 5. The variation of crack tip pressure with 
discahrging fluid temperature for the pre-combustion 
pipeline at different starting line pressures. Line 

temeparture: 20 oC.    

 

 

Figure 5. The variation of crack tip pressure with 
discahrging fluid temperature for the pre-combustion 
pipeline at different starting line pressures. Line 
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